Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 17(17): 17273-17284, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37624669

RESUMO

Experimental studies and clinical trials of nanoparticles for treating diseases are increasing continuously. However, the reach to the market does not correlate with these efforts due to the enormous cost, several years of development, and off-target effects like cardiotoxicity. Multicellular organisms such as the Caenorhabditis elegans (C. elegans) can bridge the gap between in vitro and vertebrate testing as they can provide extensive information on systemic toxicity and specific harmful effects through facile experimentation following 3R EU directives on animal use. Since the nematodes' pharynx shares similarities with the human heart, we assessed the general and pharyngeal effects of drugs and polypyrrole nanoparticles (Ppy NPs) using C. elegans. The evaluation of FDA-approved drugs, such as Propranolol and Racepinephrine reproduced the arrhythmic behavior reported in humans and supported the use of this small animal model. Consequently, Ppy NPs were evaluated due to their research interest in cardiac arrhythmia treatments. The NPs' biocompatibility was confirmed by assessing survival, growth and development, reproduction, and transgenerational toxicity in C. elegans. Interestingly, the NPs increased the pharyngeal pumping rate of C. elegans in two slow-pumping mutant strains, JD21 and DA464. Moreover, the NPs increased the pumping rate over time, which sustained up to a day post-excretion. By measuring pharyngeal calcium levels, we found that the impact of Ppy NPs on the pumping rate could be mediated through calcium signaling. Thus, evaluating arrhythmic effects in C. elegans offers a simple system to test drugs and nanoparticles, as elucidated through Ppy NPs.


Assuntos
Caenorhabditis elegans , Nanopartículas , Animais , Humanos , Polímeros , Pirróis/farmacologia
2.
ACS Appl Bio Mater ; 6(7): 2860-2874, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37342003

RESUMO

The low endogenous regenerative capacity of the heart, added to the prevalence of cardiovascular diseases, triggered the advent of cardiac tissue engineering in the last decades. The myocardial niche plays a critical role in directing the function and fate of cardiomyocytes; therefore, engineering a biomimetic scaffold holds excellent promise. We produced an electroconductive cardiac patch of bacterial nanocellulose (BC) with polypyrrole nanoparticles (Ppy NPs) to mimic the natural myocardial microenvironment. BC offers a 3D interconnected fiber structure with high flexibility, which is ideal for hosting Ppy nanoparticles. BC-Ppy composites were produced by decorating the network of BC fibers (65 ± 12 nm) with conductive Ppy nanoparticles (83 ± 8 nm). Ppy NPs effectively augment the conductivity, surface roughness, and thickness of BC composites despite reducing scaffolds' transparency. BC-Ppy composites were flexible (up to 10 mM Ppy), maintained their intricate 3D extracellular matrix-like mesh structure in all Ppy concentrations tested, and displayed electrical conductivities in the range of native cardiac tissue. Furthermore, these materials exhibit tensile strength, surface roughness, and wettability values appropriate for their final use as cardiac patches. In vitro experiments with cardiac fibroblasts and H9c2 cells confirmed the exceptional biocompatibility of BC-Ppy composites. BC-Ppy scaffolds improved cell viability and attachment, promoting a desirable cardiomyoblast morphology. Biochemical analyses revealed that H9c2 cells showed different cardiomyocyte phenotypes and distinct levels of maturity depending on the amount of Ppy in the substrate used. Specifically, the employment of BC-Ppy composites drives partial H9c2 differentiation toward a cardiomyocyte-like phenotype. The scaffolds increase the expression of functional cardiac markers in H9c2 cells, indicative of a higher differentiation efficiency, which is not observed with plain BC. Our results highlight the remarkable potential use of BC-Ppy scaffolds as a cardiac patch in tissue regenerative therapies.


Assuntos
Miócitos Cardíacos , Polímeros , Polímeros/química , Pirróis/química , Diferenciação Celular
3.
Small ; 19(32): e2207806, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37060223

RESUMO

Ratiometric fluorescent nanothermometers with near-infrared emission play an important role in in vivo sensing since they can be used as intracellular thermal sensing probes with high spatial resolution and high sensitivity, to investigate cellular functions of interest in diagnosis and therapy, where current approaches are not effective. Herein, the temperature-dependent fluorescence of organic nanoparticles is designed, synthesized, and studied based on the dual emission, generated by monomer and excimer species, of the tris(2,4,6-trichlorophenyl)methyl radical (TTM) doping organic nanoparticles (TTMd-ONPs), made of optically neutral tris(2,4,6-trichlorophenyl)methane (TTM-αH), acting as a matrix. The excimer emission intensity of TTMd-ONPs decreases with increasing temperatures whereas the monomer emission is almost independent and can be used as an internal reference. TTMd-ONPs show a great temperature sensitivity (3.4% K-1 at 328 K) and a wide temperature response at ambient conditions with excellent reversibility and high colloidal stability. In addition, TTMd-ONPs are not cytotoxic and their ratiometric outputs are unaffected by changes in the environment. Individual TTMd-ONPs are able to sense temperature changes at the nano-microscale. In vivo thermometry experiments in Caenorhabditis elegans (C. elegans) worms show that TTMd-ONPs can locally monitor internal body temperature changes with spatio-temporal resolution and high sensitivity, offering multiple applications in the biological nanothermometry field.


Assuntos
Nanopartículas , Termometria , Animais , Caenorhabditis elegans , Temperatura
5.
New Phytol ; 234(4): 1411-1429, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35152435

RESUMO

Tomato varieties resistant to the bacterial wilt pathogen Ralstonia solanacearum have the ability to restrict bacterial movement in the plant. Inducible vascular cell wall reinforcements seem to play a key role in confining R. solanacearum into the xylem vasculature of resistant tomato. However, the type of compounds involved in such vascular physico-chemical barriers remain understudied, while being a key component of resistance. Here we use a combination of histological and live-imaging techniques, together with spectroscopy and gene expression analysis to understand the nature of R. solanacearum-induced formation of vascular coatings in resistant tomato. We describe that resistant tomato specifically responds to infection by assembling a vascular structural barrier formed by a ligno-suberin coating and tyramine-derived hydroxycinnamic acid amides. Further, we show that overexpressing genes of the ligno-suberin pathway in a commercial susceptible variety of tomato restricts R. solanacearum movement inside the plant and slows disease progression, enhancing resistance to the pathogen. We propose that the induced barrier in resistant plants does not only restrict the movement of the pathogen, but may also prevent cell wall degradation by the pathogen and confer anti-microbial properties, effectively contributing to resistance.


Assuntos
Ralstonia solanacearum , Solanum lycopersicum , Amidas/metabolismo , Ácidos Cumáricos/metabolismo , Solanum lycopersicum/microbiologia , Doenças das Plantas/microbiologia , Tiramina/metabolismo , Virulência
6.
Nanotechnology ; 32(8): 085603, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33263309

RESUMO

Detection of bacterial pathogens is the need of the hour due to the increase in antibiotic resistance and the infusion of multi-drug-resistant parasites. The conventional strategies such as ELISA, PCR, and MNP based tests for the detection are efficient but they are cost, time, lab, and manpower intensive. Thus, warranting a simple and effective technique for rapid detection of bacterial pathogens. Magnetic nanoparticles (NPs) have proved to be better alternatives for separation of bacterial pathogens from a variety of sample sources. However, the use of magnetic NPs has not been successful in the detection of these parasites. The current work involves the coating of magnetic NPs (Fe3O4) with a conducting polymer (polypyrrole; Ppy) to facilitate simultaneous separation and detection. Electrical (conductivity) measurement was the mode of choice due to the sensitivity, accuracy, and ease it offers. To enhance the conductivity, carboxylic groups were expressed on the Fe3O4@Ppy complex and to ensure specificity, E. coli specific antibodies were conjugated. The resulting complex at various process parameters was characterized using FTIR, VSM, and SEM. SEM images were recorded to ensure bacterial separation at optimal process parameters. The impedance analysis and conductivity measurements were carried out for the sample volume of 15 µl. The bacterial suspension from 101-106 CFU ml-1 was successfully detected with a limit of detection of 10 CFU ml-1 within 10 min using a simplistic detection method.


Assuntos
Técnicas Bacteriológicas/métodos , Escherichia coli/isolamento & purificação , Nanopartículas Magnéticas de Óxido de Ferro/química , Polímeros/química , Pirróis/química , Anticorpos Antibacterianos/química , Anticorpos Imobilizados/química , Técnicas Biossensoriais , Condutividade Elétrica , Escherichia coli/imunologia , Limite de Detecção , Tamanho da Partícula , Propriedades de Superfície
7.
Nanomedicine (Lond) ; 13(10): 1221-1238, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29882719

RESUMO

Magnetic nanoparticles (MNPs) are very attractive especially for biomedical applications, among which, iron oxide nanoparticles have received substantial attention in the past decade due to the elemental composition that makes them biocompatible and degradable. However recently, other magnetic nanomaterials such as spinel ferrites that can provide improved magnetic properties such as coercivity and anisotropy without compromising on inherent advantages of iron oxide nanoparticles are being researched for better applicability of MNPs. Among various spinel ferrites, cobalt ferrite (CoFe2O4) nanoparticles (NPs) are one of the most explored MNPs. Therefore, the intention of this article is to provide a comprehensive review of CoFe2O4 NPs and their inherent properties that make them exceptional candidates, different synthesis methods that influence their properties, and applications of CoFe2O4 NPs and their relevant applications that have been considered in biotechnology and bioengineering.


Assuntos
Materiais Biocompatíveis/uso terapêutico , Cobalto/uso terapêutico , Compostos Férricos/uso terapêutico , Nanopartículas de Magnetita/uso terapêutico , Anisotropia , Materiais Biocompatíveis/química , Cobalto/química , Compostos Férricos/química , Humanos , Nanopartículas de Magnetita/química , Nanotecnologia/tendências
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...